#JamGreenDesal #Fr Blog#1

Quelques nouvelles: Le projet ‘Jamaican Green Desalination Project’ (#JamGreenDesal) a été officiellement lancé dans sa phase publique. Ce projet est une collaboration entre l’Université des West-Indies de Jamaïque (UWI Mona) et le TCGNRG. Dirigé par Zachary Williams à travers son Master. Pour plus d’informations suivre la page officielle du projet.

Ce projet tente de créer des outils permettant de concevoir une centrale de désalinisation alimentée par des énergies renouvelables (c’est-à-dire : solaire, éolien, énergie des vagues)

En parallèle, une enquête est en cours pour mieux comprendre la relation entre la Jamaïque et l’eau douce. Si vous avez 5 minutes et que vous résidez en Jamaïque, aidez-nous et répondez au sondage sur le lien

https://docs.google.com/forms/d/e/1FAIpQLSc2CE4qNqlVrc5sp3uxKOlZx4khx4jwfT-LVzd8c3ajuvypQg/viewform?usp=pp_url

#JamGreenDesal Blog #1

Some news : The Jamaican Green Desalination Project (#JamGreenDesal) was officially launch in its public phase. This project is a collaboration between UWI Mona and TCGNRG. Led by Zachary Williams through his MPhil. More information are available on the official webpage

This project try to build the tools to design Desalination Plant powering by Renewable Energy (i.e., solar, wind, wave)

In parallel a survey is running to better understand relation between Jamaican and Freshwater. If you have 5 minute and reside in Jamaica please help us and answer to the survey on this link

https://docs.google.com/forms/d/e/1FAIpQLSc2CE4qNqlVrc5sp3uxKOlZx4khx4jwfT-LVzd8c3ajuvypQg/viewform?usp=pp_url

Sargassum on West coast of Martinique

Illustration 1 : Oceanographic and Meteorological data for beginning of June 2019

June 1st and 2nd 2019 beaching of sargassum were observed on the Caribbean coast of Martinique (Fort-de-France, Schoelcher). This type of beaching has been rare since 2011 and the over-abundance of drifting sargassum rafts in the North Atlantic and the Caribbean Sea.

Each year one or two beaching are observed on this coast from Fort-de-France to the Prêcheur. They take place only under favourable oceanographic and meteorological conditions.

The breakdown of the Trade Wind felt after the passage of a tropical wave favoured the action of the Southwest currents. Sargassum beds generally extend northward along the Caribbean coast pushed by the East wind and sea currents. This Sunday June 2nd pelagic algae were trapped by the shallow waters of creeks and bays.

In two days of presence, the decomposition of algae forced their collection on the small artificialized Cove of Batelière at Schoelcher (500 on 200m), due to emanation of di-oxyde of sulphide and ammonia (SO2, NH3). This rapid decomposition can obviously be explained by the age of the rafts that went aground. But also by relatively high water temperatures (27.9-28.5 ° C) which decreases dissolved oxygen concentrations in the water of the order of 1 to 2 mg per litre and therefore anoxic decomposition (i.e., without oxygen ).

The quality of the water is another element to take into account. Only the quality for bathing is continuously monitoring. The last map, published by the Regional Office of Health (ARS), available from (illustration 2) indicates for the beach of Batelière a ‘good’ quality. This measure is misleading because it indicates only the frequency of the presence of certain bacteria of faecal origin but not the capacity of the ecosystem to withstand anthropogenic or natural pollution.

Illustration 2 : Map of Water Quality for Martinique’s bathing of 2018

The runoff water related to this tropical wave (give a name) to degrade the quality of the water, on the biological and physiochemical point, making this area more sensitive to the presence of large amount of living organism.

It is essential to take better account of bathing water quality in the determination of areas exposed to the risk of decomposition pollution of seaweed-type algae. To better prepare the pickup procedures and necessary equipment.

TCGNRG can help you design better risk maps for over-concentration of seaweed based on environmental conditions and better organised your organic matter collection and your recovery procedures. Do not hesitate to contact us

Unprepared sargassum algae collection

Many cities impacted by brown seaweed stranding (Sargassum Fluitans and Sargassum Natans) try to react to the various consequences of this presence of organic matter, living or dead, in large quantity. The effects, although many times reproduced, remain poorly understood and uncontrolled. They range from the simple presence of living floating algae which will modify the landscape, prevent swimming and / or navigation to the decomposition of packed algae on a beach or rip rap in anoxia or anaerobic (lack or total absence of oxygen). This latter case causes multiplication of micro-organisms specialized in usage of nitrogen or sulphur to produce energy. It causes the emission of biogas such as hydrogen sulphide (H2S) and ammonia (NH3).

Figure 1 [english]
Fig. 1: View of the port of Goyave from one of the docks

These two gases are only a small part of the gases emitted during the anaerobic decomposition of these algae, wrongly considered as toxic. This pseudo-toxicity only depends on the fermentation conditions caused by human activities. The risks related to exposure over long periods to concentrations below the alert threshold, 5 ppm for H2S revised to 1 ppm by the High Council for Public Health (HCSP) on 08/06/2018, is undoubtedly dangerous for respiratory tract and general health. This is for people living or working near these emanations from few meters to several kilometres.

Collection, cleaning or bio-redemption of sargassum algae or their waste can’t be imagined using conventional mechanized methods due to the nature of the seaweed: small; charged with sea water and friable in the ageing phase. Beaching area, coastline, mangrove swamp, bay are at the scales of Caribbean island always complex and ecologically sensitive to modifications. Usage of a power shovel on an un-stabilized soils compresses them and modifies water flows rendering these soils at best unusable for a short period and at worst subject to erosion.

There is no point picking up algae that will leave with the next tide or to move sand, rock and concrete to shift algae from an area. The preparation of any cleaning-collection-rehabilitation operations is essential. It must include the adaptation of harvesting methods, the respect of the areas to be treated, the ability to move, store and process the organic or mineral matter collected, while ensuring the safety and health of the people involved and the residents.

The case of the municipality of Goyave (in Guadeloupe, FWI, [16.13N, 61.57W]) is a good example. Subject for several years (2014-2018) to arrivals of seaweed it remains unprepared for pickup operations in its small port . The collection area is a small fisherman port located in a highly anthropized mangrove swamp area which is used as outlet for the wastewater and rainfall water network (Fig. 1). The objective here is not to throw the stone at a particular town, because few communities in the world are truly prepared to respond to non-permanent solicitations such as water, air or soil pollution.

Figure 2 [english]
Fig. 2: Photograph of the mini hydraulic excavator used in the port of Goyave on August 8-9, 2018 with a modified bucket damaged

The recent pickup operations of August 8th & 9th 2018 shows that well. The hydraulic crawler excavator used although its smallness is not adapted to the site and causes damage (Fig. 2). The lack of sargassum on the water surface, in phase of aging these pelagic algae lose their floats (pneumatophore) and sink, pushed to clean the bottom of the port basin. The non-adaptation of the bucket to scratch the rocky bottom damaged it (Fig. 2). The mud a mixture of clay, organic and plastic materials as well as hydrocarbons is stored without precaution on a mangrove swamp area (Fig. 3) and in an unsupervised area initially reserved for sargassum spreading (Fig. 4) . The lack of markup on the building site and the lack of information boards pose questions for the safety of workers and passerby. Presence of biofouling, sargassum decomposition sludge and non-dry mud can emit biogas and locally increase the atmospheric concentrations of H2S or NH3 (Fig. 5).

Figure 3 [english]
Fig. 3: Photograph of a pile of mud stored on old mangrove swamp area near the port of Goyave

This clean-up operation certainly had no effect on air pollution levels, main biogas production areas was not in this area. But it will allow a better quality of the waters of the port and therefore reduce impact of algae decomposition. The environmental cost: degradation of public goods, soil and water pollution is prohibitive compared to the benefits.

Figure 4 [english]
Fig. 4: Photograph of Goyave port mud spreaded on the backside of the beach of Viard

Stranding of sargassum algae should push for better organization and management of environmental work. The complexity of the places and systems concerned, their bio-diversity level imposes a great rigour on the actions that will be conducted there. TCGNRG remains at your disposal to help you set up sustainable devices adapted to the management and treatment of beaching of algae, organic matter or plastic.

Figure 5 [english]
Fig. 5: Photograph showing soiling on one of the docks of the port of Goyave after cleaning operation

La biodégradation des sargasses produit de la boue de décomposition

La biodégradation des algues sargasses est un procédé micro-biologique complexe qui est fortement dépendant des conditions environnementales. La décomposition dans une zone d’activité humaine peut être gênante olfactivement et même devenir toxique en fonction des émissions de sulfure d’hydrogène, d’ammoniaque et de mercaptan entre autres. Les variations de la force et de la direction du vent, de la pression atmosphérique à la surface, des températures de l’air et de l’eau peuvent modifier rapidement et pour des temps plus ou moins longs les concentrations de biogaz. Le transport éolien toujours présent peut advecter les gaz sur de longues distances et intoxiquer un grand nombre de personnes.

Cette biodégradation qui se produit le plus souvent en milieu aquatique (ou fortement humide) peut passer par des phases de fermentation et de putréfaction qui modifient la qualité des eaux avec des effets plus ou moins localisés. Dans un port ou une zone semi-fermée avec de faibles échange de masse d’eau les variations d’acidité et de concentration d’oxygène dissous peuvent impacter le biotop et supprimer toutes traces de vie. Il est donc essentiel de suivre l’évolution de la qualité des eaux et des processus de dégradation.

Photo du port polyvalent de la Vinaigrerie à Petit-Bourg, Guadeloupe, DAF, partiellement recouvert de boue de décomposition des algues sargasses.

TCGNRG peut vous aider à la gestion de ces pollutions atmosphériques et aquatiques en monitorant, simulant et prévoyant les émissions et la propagation des gaz et des déchets associés. Nous proposons aussi de la formation à la gestion et l’entretien des ports, des plages et des eaux côtières. Nécessitez pas à nous contacter!